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Abstnct-The theory of torsional vibrations of a circular, hollow cylinder with a piecewise constant
periodic variation of rigidity modulus and mass density is developed in terms of F10quet waves. The
dispersion spectrum is shown to have a band structure, and the arrangement of characteristic sequence at
the end-points of the Brillouin zone is studied. The problem of co-existence of periodic solution is
examined in detail and the regions of stability and lability are charted.

I. INTRODUCTION AND GOVERNING EQUATIONS
Consider an infinite, circular, hollow cylinder with inner radius b, outer radius a and thickness
2h == (a - b), a > b, b ~ O. In cylindrical coordinates (r, (J, z), the domain R of the hollow,
homogeneous cylinder is defined as R: R, x R2, where R,: b < r< a, R2 :/zi < 00 and 0S (J < 21T.
In the longitudinal z-direction the domain R2 is the union of denumerable infinite number of

00

cells Rd with identical properties, so that R2: U Rd' Each cell Rd consists of the union of two
layers R, and Rr with z-domains R,: 0< Z < I and Rr: 1< z < d, where d == (l + f) is the lattice
distance of a unit cell. We assume that the material properties of the elastic layer R, are the
modulus of rigidity p, and mass density p, and the corresponding material properties of the
elastic layer Rr are specified by the parameters ii and p, respectively. We thus assume that each
cell consists of two layers of lengths I and ~ and material properties (p" p) and (ii, p), with the
additional assumptions p,1p > 0, iiIp> 0 and p,1ii > O. We also assume that an infinite number of
these primitive cells are bonded together at their common interfaces Izl =nd, n =0,1,2, ... so that
the domain R defines an infinite, circular, hollow, layered cylinder with periodic structure of
material constants, with real period d.

For time-harmonic torsional waves with angular frequency w, the displacement components
(u" uz) == 0, and the non-trivial tangential component of displacement U8 == u satisfies in an open
domain R the boundary eigenvalue problem

1 a (au) u a2u (1TO)2-- r- -"7+ -;;::'2+ - U = 0, 'tI
r ar ar r az 2h PER

7'relaR = 0, aR: (r = a and r = b), /zl < 00

(1)

where for a homogeneous, hollow cylinder R: b < r < a, Izi < 00, 0 == wlw, is the non-dimen
sional frequency, w, == (1T/2h)c is the lowest thickness-shear frequency of an isotropic, homo
gene~)lls, infinite plate of half-thickness h, and c == (p,lp)1/2 is the speed of the shear wave in an
infinite, homogeneous, isotropic elastic medium with shear modulus p, and mass density p [1].

Using Bernoulli's method of separation of variables, we get the separated equations

d (dR) 1[(1TK)2 ]- r- +- -r -1 R=O b<r<adr dr r 2h '

Z" +[2~ ~rZ = 0, Iz/ < 00

K
2 == (02

- e),

(2)
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where we assumed the product solution to be of the form u(r, z) == R(r)Z(z), and accents
indicate differentiation with respect to coordinate z. Since

it follows that the boundary conditions are

d
dr (rR) - 2R =' 0on aR.

In addition Trr = Tn == 0 and

au
TzO =' JL aZ'

(3)

(4)

(5)

Now the structured, hollow cylinder consists of an infinite number of primitive cells, and in
the case under discussion, each cell consists of two layers. Therefore, for the two layers in each
cell, the governing equations are

where g and l are the longitudinal wave numbers in the layers of thickness I and f,
respectively, and y2 == (JLIp)(pl ji). Because the cylinder is of periodic structure with period d,
these equations hold from cell to cell. The wave numbers g and l have therefore to be
analytically extended as periodic functions of period d, where y is piecewise constant.
Therefore, in principle, we have a second order differential equation with piecewise constant
periodic coefficient.

The general theory of differential equations with periodic coefficients is due to Floquet[2],
and an account of the theory can be found in Ince[3], Stoker[4], and Strutt[5]. In quantum
mechanical problems use of Floquet's theory was first made by Kronig and Penney[6], and a
discussion of this problem can also be found in Brillouin [7]. More recently, Kaul and
Herrmann [8], and Delph et aJ. [9, 10] have made use of Brillouin's procedure in solving some of
the wave propagation problems in periodically structured elastic solid.

However, when the periodic coefficients are piecewise constant, Brillouin's method is
unnecessarily long and arduous. Meissner has, however, shown that in this case an exact
solution can be easily obtained in terms of elementary functions[ll]. An excellent review of
Meissner's equation and its various properties is contained in a recent paper by Hochstadt[l2].
The chief advantage of the method is that the size of the characteristic determinant depends
only on the order of the differential equation and is independent of the number of layers in the
unit cell. Thus in the present problem, where we are dealing with a second order system, the
order of the characteristic determinant is 2x 2, irrespective of whether there are two or more
layers in the cell.

The purpose of this paper is therefore twofold, (i) to illustrate use of Meissner's method,
and (ii) to study in greater detail the problem of torsional waves in a hollow, structured
cylinder. In addition to the discussion of dispersion spectrum, we also study the typical
Liapounoff-Haupt arrangement of the characteristic sequence [13, 14], the problem of co
existence of periodic solutions, and the regions of stability and lability. Certain critical cases
and properties of bandspectrum are not discussed, and can be found in an earlier report[l5].
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2. SOLUTION R(r) IN THE RADIAL DIRECTION

To find the radial eigenfunctions R..(r), we first solve the boundary eigenvalue problem

d (dR) 1dr rd'T +,(132r -1)R=0, 13 = (1TK/2h), b<r<a,a>b

d
dr(rR)-2R =Oon r= a and r= b.
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(7)

This is obviously a self-adjoint, singular boundary value problem with 132~ 0 and real, and the
eigenfunctions are orthogonal with respect to weight r. The general solution is

(8)

where A and B are two arbitrary constants. Since the Wronskian rW[J,({Jr), Y,({Jr)) =
2/1T(i: 0), it follows that the solution is valid for all admissible values of separation constant (J.
In particular, when 13 = 0, we get from eqn (8)

R(r) =Ar+ Blr, 13 =0. (9)

The two coefficients A and B are so chosen that the shear stress TrlJ vanishes on both
boundaries aR: r = a and r =b. Using the general solution R(r) in the boundary condition (7h,
and setting the determinant of the coefficients A and B equal to zero, we get the eigenvalue
equation

(10)

and the amplitude coefficient is given by

(11)

Since the boundary value problem is self-adjoint, the eigenvalue equation (10) has simple
roots, which are all real and discrete and can be arranged in an increasing order

Corresponding to every eigenvalue there is an eigenfunction and these eigenfunctions form a
complete set, which are mutually orthogonal with respect to weight r. For every eigenvalue 13..
we can find B.. in terms of Am and therefore the radial eigenfunction R..(r) can be written in the
form

(12)

where the suffix n =0,1,2, ... belonging to R(r), A and 13 has been suppressed for brevity. For
130 =0, the eigenfunction Ro(r) takes the simple form

Ro(r) =Aor, (13)

and represents a pure torsional mode.
These eigenfunctions can be easily normalized, if we make use of the algebraic property that

the product of two cylinder functions Ct(r) and Dt(r) can be written as
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Making use of the normalizing condition

and the algebraic identity just mentioned, we find that corresponding to the eigenfunction R(r),
the normalized coefficient A in eqn (12) is given by

(15)

where

1
C(r) = 2r[ Y/(/3a ){N(/3r) - JO(/3r)J2(/3r)} +!l(/3a){ y I

2(/3r) - Yo(f~r) Y2(,8r)}

- J2(/3a) Y2(/3a){2J1(/3r) Y1(/3r) - Jo(/3r) Y2(/3r) - YO(/3r)J2(/3r)}]. (16)

The normalized set of orthogonal eigenfunctions are thus given by

(17)

In particular, in the limiting case when /3 = 0, we have a pure torsional mode

(18)

In the case of a solid cylinder b = 0, ,8n are the simple roots of the eigenvalue equation
J2(/3a) = 0, and the normalized set of orthogonal eigenfunctions take the simple form

(19)

If we write bla == t, then

and the eigenvalue equation (10) takes the form

(20)

For t < 1, the asymptotic expansion for the pth root of this transcendental equation is given by
the McMahon series [16],

where
_ (1- t) _

q= 41Tpt' p-l,2,3, ... (22)

It is obvious that the lowest root of eqn (20) is KO = O. The higher roots of this equation are
given with sufficient accuracy by the asymptotic formula (21). For t = 2/3, the first three roots
are Kj = 1.030 4056, K2 = 2.015 6684, K3 = 3.010 5057. For p > 3 the higher roots become
increasingly accurate. For t = 1/3, K2 = 2.115 5496, K3 = 3.081 0800, K4 = 4.061 9010, etc.
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3. DISPLACEMENT FIELD Z(z) IN ONE CELL
The domain of a typical cell Rt x Rd is the union of two layer~ Rt x R/ and Rt x Rr with an

interface R/ nRr. The displacement components Z(z) E R/ and Z(z) E Rr are governed by the
ordinary differential equations (6)

where

Z"(Z) +a2Z(z) = 0, Vz ERj, R/: 0< z < I

Z'(z) +a2.2(z) = 0, Vz ERr, Rr: 1< z < d,

d=(l+l)

1T' - 1T'-
a =2h {, a =2h {,

{2 = (02 _ K2), P= «yO)2 - K2),

y2 =(clC)2, c2= (.LIp, c2= iiIii

(23)

(24)

The continuity of displacement u(r, z) and shear stress TZ9 at the interface R, n Rr requires that
the functions Z(z) and 2(z) must satisfy the continuity conditions

Z(I) = .2(1),

(.LZ'(l) = ii.2'(l),

where accent denotes differentiation with respect to the coordinate z.
We assume the general solution of the differential equation (23) in the form

Z(z) = A cos aZ +B 1.. sin az, a2 ~ 0, Z E R/
a

.2(z) = Acos az +B~ sin az, a2 ~ 0, zERr.
a

The two linearly independent solutions

satisfy the initial conditions

(25)

(26)

(27)

(28)

and therefore the Wronskian W[ Wt(z), W2(Z)] = 1. This establishes the linear independence for
a2~ O. Similarly it follows that cos az and (sin az)/a are also linearly independent for ii2~ O.

Using the continuity equation (25) at the interface z = I, we can determine the coefficients Aand
B in terms of the coefficients A and B. These coefficients are

A= A(Ct+~SS)+!i(st-~ CS),(.La a (.La

B_ ( - (.La -) B ( - (.La -)-=-A CS--=SC +- SS+-=CC ,a (.La a JLa

where

C == cos ai, t == cos ai, S == sin ai, S == sin al

and the coefficients A and B are still to be determined.

(29)

(30)
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Having determined the coefficients A and B, the general solution in the fundamental cell
R, U Rr in terms of the coefficients A and B takes the form

Z(Z) = AWJ(z) +Bwiz), a2~ 0, z E R,

2(z) = AWJ(z) +Bwiz), &2 ~ 0, z ERr

where now

WJ(z) == C cos &(z -I) - ~ S sin &(z -I),
f.La

W2(Z) == 1 S cos &(z -I) + ,!_ C sin &(z -I),
a f.La

and the respective Wronskians are

(31)

(32)

(33)

In order that WI and W2 be linearly independent, their corresponding Wronskian must be
non-zero. This requires that 0 < fJ-I fi.

It can be easily verified that at the interface z = I of the two layers in a primitive cell

w,(l) = wJ(l), W2(l) = W2(l)

fJ-W;(l) = fiw;(/), fJ-wW) = fiw~(l) (34)

and therefore the general solution (31) satisfies the continuity conditions (25).
It may be finally remarked that this process can be easily generalized if there are more than

two layers in a primitive cell. Such an extension to three and four layered composite is
contained in Meissner's paper[ll].

4. QUASI·PERIODIC SOLUTIONS IN A CYLINDER
WITH PERIODIC STRUCTURE

In the case of a cylinder with periodic structure with period d, we require that at the
common interface between two adjacent cells, the displacement and stress be continuous and at
least quasi-periodic. The conditions of continuity at the cell interface z = dare

ii(r, d-) = u(r, d+),

1'zir, d-) = 'Tzir, d+).

Quasi-periodicity from cell to cell requires that

u(r, z + d) = au(r, z),

'Tzo(r, Z + d) = a'Tzo(r, z), 0 < Z < I

ii(r, z +d) = aii(r, z),

Tzir, Z + d) = aTzo(r, z), 1< Z < d

(35)

(36)

(37)

where a is a suitable constant to be determined [3]. Combining the continuity and the
quasi-periodic conditions we find that at the cell interface the appropriate continuity conditions
are

ii(r, d-) = au(r, 0+),

1'zo(r, d-) = a'Tzo(r, 0+). (38)
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In each lamina of the unit cell, the tangential component of the displacement can be
expressed in the product form

ii(r, z) =R(r)Z(z), u(r, z) =R(r)Z(z) (39)

where the eigenfunctions R(r), Z(z) and Z(z) are defined by eqns (17) and (31), respectively.
The continuity conditions (38) at a typical cell interface therefore takes the simple form

Z(d-) = aZ(O+),

jiZ'(d-) = aJLZ'(O+). (40)

The functions Z and Z contain two arbitrary constants A and B which can now be
determined if we make use of the continuity equations (40). Substituting the functions Z and i in
these two equations, we get a pair of linear homogeneous equations

[
W.(d)- a W2(d)] [A]
jiw;(d) jiwi(d) - aJL B = O. (41)t

Existence of a non-trivial solution for a system of homogeneous equations requires that the
determinant of the coefficients A and B must vanish. This gives us the characteristic a-equation

(42)

where we have used the fact that W[wl(d), w2(d)] = ji!JL. In addition, for each value of the
constant a, the amplitude ratio is given by

A: B = w2(d): [a - wM)] = [aJL - jiwi(d)]: jiw;(d).

Assuming at- 0, we can rewrite the characteristic equation (42) as

I
a+-=H,

a
where

H= wt(d)+~wi(d).
JL

It easily follows that

(Va +Ja)
2

= H +2, (Va - Ja)
2

= H - 2,

and therefore

a _1. = V[(H - 2)(H +2)].
a

(43)

(44)

(45)

(46)

(47)

If al and a2 are two roots of the eqn (42), then it is obvious that ata2 = 1 and (at +a2) = H.
Evidently at =a and a2 =l/a are the two roots and are explicitly given by

~~lia =~ [H ± V(H2
- 4)] =~ h/(H + 2) ± V(H - 2)f. (48)

tNote that the 2x 2-form of the determinant remains unchanged if there are more than two layers in a primitive cell.
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We now distinguish three cases:

R. K. KAUL and C. S. LEE

(i) IHI < 2. If IHI < 2, then from (48) it follows that a] and a2 are complex conjugate and of
absolute value unity. In this case all solutions are bounded since quasi-periodicity from cell to
cell requires that after n cells

where now la/ = 1.

Z(z +nd) =anZ(z), Z(z +nd) =anZ(z) (49)

(ii) IHI > 2. If IHI > 2, then from (48) it follows that al t- a2 and the two roots are real. Since
ala2 = 1, it implies that if one root is greater than unity then the other must be less than unity in
absolute value. Thus as the number of cells n~ 00, one of the solutions will become unbounded
and the other will decay to zero.

(iii) H = ± 2. If H = ± 2, then al = a2 = a is a root of multiplicity 2. Since al a2 = 1, it
follows that a 2= 1and therefore either a =+ 1or a =- 1, each being a double root. When (T = 1
for H = 2, the solution is periodic with period d, since in this case Z(z +d) = Z(z). When a =- 1
for H = - 2, the solution is periodic with period 2d, because in this case Z(z +2d) = (_1)2Z(z) =
Z(z). In the case of double roots only one solution is basically periodic, the second linearly
independent solution is in general aperiodic [3]t

The characteristic equation (42), or equivalently eqn (46) takes a familiar form if we
introduce the transformation

a = exp 2;(T + i)'\

where; is a primitive fourth root of unity,

(50)

(51)

and ,\ is a characteristic exponent (also known as Floquet's exponent), which determines the
phase shift. In the transformation (50), ,\ is congruent modulo 1T/(T+ i). For a given a, the value
of ,\ is determined uniquely in the interval 1['\]: [0, 1T/(T + i)]. Having determined ,\ in the
interval 1['\], all other values of ,\ are congruent to it modulo 1T/(T+ i).

5. THE CHARACTERISTIC A-EQUATION

In terms of the characteristic exponent '\, the two characteristic equations (46) can be
written in the useful form

sin2 (T + i)'\ = j (2 - H),

cos2 (T + i)'\ = j (2 +H). (52)

The function H is defined in terms of w](d) and w2(d) which can be easily obtained from WI(Z),
W2(Z), which are given by (32). After some algebraic simplification it can be shown that the two
characteristic equations (52), take the interesting product form

sin2 (T + i)'\ = { C('T~)S(ii) + :: S(T~)C(ii)}{C(T~)S(ii)+~S(T~)C(fi)},

cos2 (T + f)'\ = {C(T~)C(fi) - :~ S(T~)S(fi)}{ C(T~)C(ii) -~S(T~)S(fl)l (53)

tThis is reminiscent of a similar situation in the theory of ordinary differential equations, when the indicial equation has
roots of higher multiplicity.
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where Sand C are abbreviations for trigonometric sine and cosine functions, respectively. We
may now note that the two trigonometric functions sin2(T +f)A and COS

2
(T +f)A, are even

functions about A= 0 and A= 1T/[2(T+T)]. In addition, A is congruent modulo 1T/(T+T). It is
therefore sufficient to restrict F1oquet's wave number Ato the interval IB[A]: [0, 1T/2(T+T)]. With
this restriction on the value of A, the frequency spectrumnvs Ahas a zone structure, and in the first
Brillouin zone IB, A varies from 0 to 1T/[2(T+f)] [7].

The characteristic roots n of this characteristic equation can be arranged in an increasing
order and thus can be indexed by a suffix n. It can be shown graphically that the order follows
the well-known Liapounoff-Haupt sequence[l3, 14]. In particular, it can be exhibited explicitly
at the end-points of the Brillouin zone, A=°and A=1T/[2(T+T)].

Of particular interest is the case when H =± 2, that is, when u =± 1. When u:::: 1,
A=n1Tl(T+f), n =0, 1,2, . .. and in the reduced zone scheme A=0 corresponds to the left
end-point of the interval lB' Since u =1 is a zero of multiplicity 2, out of the two linearly
independent solutions only one is periodic with period d; the second solution is aperiodic.
Corresponding to the periodic solutions with period d, the characteristic equation (53), un
couples into two equations

(1)

(2)

- p,~
tan f~+~ tan T~ =0,

tan fl+~tan T~ =0.

u= I,H=2

(54)

When u=-I, A=(n+l/2)1TI(T+f), n=0,I,2, •.• and in the reduced zone scheme A=
'IT/[2(T + f)] corresponds to the right end-point of the interval lB. Since u:::: 1 is a zero of
multiplicity 2, only one linearly independent solution is periodic with period 2d. Corresponding to
the periodic solution with period 2d, the characteristic equation (53)2 uncouples into two
equations

(1)

(2) cot ft- ~tan T~ = 0.
p,~

u=-I, H=-2

(55)

One can easily see that the multiplicity of the root u = 1, corresponds to the multiplicity of the
root A=n1Tl(T+ f), and multiplicity of the root u =- 1 corresponds to the multiplicity of the
root A= (n + 1/2)'lT/(T + T). This follows from the fact that in the first case sin2

( T + f)A and its
first derivative both vanish at the left end-point of the Brillouin zone. In the second case
cos2( T + f)A and its first derivative both vanish at the right end-point of the Brillouin zone.

If Z(z) is a solution then Z(- z) is also a solution because the differential equation is
invariant under coordinate reflection. These two solutions are in general linearly independent,
unless Z(z) is an even or an odd solution. However, we have shown the existence of at least one
periodic solution for u =± 1. Therefore, either Z(z) is a periodic solution or it is not. If Z(z) is a
periodic solution then it is either even or odd. If it is not even or odd then we can construct the
solutions [Z(z) +Z(- z)j and [Z(z) - Z(- z) which are even-periodic and odd-periodic, re
spectively. In either case, even-periodic and odd-periodic solutions can always be determined,
when periodic solutions exist. Thus at the left (right) end-point of the Brillouin zone, even- and
odd-periodic solutions with period d(2d) can always be determined.

The dispersion spectra on an extended zone scheme are shown in Fig. 1 for Ko = 0, and in
Fig. 2 for KI =1.18920. The material parameters are t =1/3, 'Y =1/4, p,/p. =40, PIP:::: 5/2 and
fIT = 5. Real segments of the spectra are shown as full lines, imaginary segments are shown as
dotted lines:.In Fig. 2, point A corresponds to the limiting case f:::: 0, and point B to the limiting
case when,:::: O. In these figures, hatched regions represent stopping bands.
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6. CHARACTERISTIC A-EQUATION FOR KO =0

In the case of pure torsional mode f30 =0 and this implies KO =0, ~ =n, [= -yn. The
characteristic equations (53) now take a simple form

sin2
(T+ i)'\ = { C(TO)S(-yin) +~ S(TO)C( -yi0)}{C(Tn)S( -yiO) +-f:y S(TO)C( -yin) },

cos2 (T + i),\ = { C(TO)C(-yin) - ~ S(TO)S(-yiO)}{C(TO)C(-yin) - -f:y S(Tn)S( -yi0). (56)
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Fig. 2. F1oquet's spectrum on an extended zone scheme for torsional modes with one radial node,
K( = 1.1892. Real segments are shown as fun lines, imaginary segments as do!ted lines. Hatched regions
represent stopping bands. Wave number ~=O at point A, and at point B, ~=O. Brillouin zone Is[A):

[0, 1T/2('T +ill.
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At the end-points of the Brillouin zone, for u = 1 the characteristic equations are

tan yfO +1i:.. tan 'TO = 0,
IL

u=I,H=2

tan yiO +..l!:.;: tan 'TO = 0,
YIL
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(57)

and for u = -1, the characteristic equations are

cot yfO - '11:!:.. tan 'TO = 0,
IL

u= -1, H=-2

cot yfO -..l!:.;: tan 'TO = 0.
YIL

(58)

7. LIAPOUNOFF-HAUPT SEQUENCE

We now demonstrate graphically that at the end-points of the Brillouin zone the charac
teristic values of A can be arranged in a Liapounoff-Haupt sequence, [13,14]. This is an
interesting property of certain differential equations with periodic coefficients, and in this
relatively simple case it can be demonstrated explicitly. We first consider the case of pure
torsional mode, corresponding to Ko = 0.

Let yiillL == f, yf/'T == T and 'TO == x. Then for u = 1, eqn (57) can be written as

(1)

(2)

Tx = hr - tan-I f tan x,

Tx = k71" - tan-I ~ tan x,

and for u = -1, eqn (58) takes the form

(59)

Tx = (2k + 1)71"/2 - tan-I f tan x,

Tx = (2k + 1)71"/2 - tan-I ~ tan x, (60)

where in these equations k = 0,1,2, ....
First consider the multi-valued function

f(x) = k71" - tan-I f tan x, k = 0,1,2, ....

for a fixed value of parameter f. The slope of the function is

f'(x) = -f/(cos2X +f2 sin2x),

and its curvature is

(61)

(62)

(63)

Since f> 0, the slope is always negative and reaches a value -f for x = 0, 71", 271", ... , and a
value of -1/f for x = 71"/2, 371"/2, 571"/2, .... For f = 1, the curvature is zero. For f;c 1, the
curvature is zero when x = 0, 1T'/2, 1T', 3tr12,.... When f = 1, f(x) =

k7r - x, and represents a straight line with slope -1 and zero curvature. Further f(x) = k71" for
x =0,71",271", ... and for x = 71"/2,377"/2,571"/2, ... , f(x) =(k - (1/2))71". For other values of x, the
function can be readily computed and the spectral lines are shown in Fig. 3, marked 1. We can
similarly analyze the function

f(x) = k71" - tan-I ~ tan x,

SS Vol. 18, No. 4-C
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.,,/2 ." 3.,,/2 2." 5.,,/2 X 3."

K =0o
Fig. 3. Plot of the multi-valued function f(x) vs x for KO =p. St~aight lines w.ith slope-l correspond to the
case r =I. For T =3/1, OJ =04,07 =0 8, etc. for T.= 2/1, OJ =04,05 =06,!4 =Ow, etc. and for T =5/4,

f4 =0 10, etc.

and the spectral lines are shown in Fig. 3, marked 2. The points of intersection of the set of
these two families of curves with the straight line with slope T locates the zeros of the two
characteristic equations (57),,2' It is obvious from the figure that the zeros of these two
characteristic equations, which correspond to periodic solutions with period d, form asub-sequence

(64)

We can similarly plot the two functions f(x) corresponding to the case (J" = - 1. In Fig. (3),
these curves are marked i and 2. The intersection of these curves with the straight line with
slope T, locates the zeros of the two characteristic equations (58). If 0 represents an element of
this sequence, then it is obvious from the figure that the elements can be ordered in a
sub-sequence

Combining the two sub-sequences, we have the Liapounoff-Haupt sequence

0=00 <0, ~02<nl~n2<03~04<03~04< ...

(65)

(66)

It may be remarked that such a sequence is a characteristic of a wide class of problems
governed by certain differential equations with periodic coefficients.

We now consider the general case for the radial eigenvalue K
2 > O. In this case the

characteristic eigenvalues at the end-points of the Brillouin zone, for (J" =+ I and (J" =- 1 are
given by

(I)

(2)

(67)
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Consider the first of the four equations (67). In the notation defined earlier, this equation can
be rewitten as

(68)

where the function fl(X) is defined as

ft(x) = -tan- I (r~e;;~(;~)t) tan V[X2-(Kd]), x> K'T/Y

=0, x = K'T/Y

= - i tanh-I (r ~(~;/~~2K~rtan V[x2- (K'T)2] , K'T < X< K'T/Y

= 0, x = v[(Kd+ 172
]

= 0, X= V[(K'T)2 +4172]

= - itanh- I [rK'TV[(1/y)2-1], x = K'T, y< 1

= - i tanh-l(r~((;'Trt-)2) tanh V[(K'T)2_ X2], o<x < K'T

=- i tanh-1 (~tanh K'T)' x =0.

For t == b/a =1/3, the first radial eigenvalue is K) =1.18920. For the purpose of numerical
computations we select as before

ii/JL =40, pIp =5/2, l/a =3/5, iia =3,

which leads to

Y = 1/4, r = 10, 'T =917/20, T=917/4, T =5/4,

as the values of the parameters. We now plot the function kl7 +fb), for k = 0,1,2, ..... The
points of intersection of these curves with the parabola TV[x2- (K'T/yf], locate the zeros of
the characteristic equation (67)1' In Fig. 4, the parabola and the spectral lines are drawn for
x ~ K'rly, and the spectral lines corresponding to the characteristic equation (67») are marked 1.
The sepctrallines for the second characteristic equation are also shown in the same figure, and
marked 2. It is obvious from the figure that the zeros of the two characteristic equations, when
arranged in an increasing order, form a sub-sequence, which is similar to the case KO =O. The
second system of characteristic equations are plotted similarly and are shown in the same
figure. These spectral lines are marked i and 2, respectively. Again it is obvious from the figure
that there exists a sub-sequence, similar to the case KO = O. Combining the two sub-sequences,
we find that the zeros of these four equations when arranged in an ascending order fOl'm the
Liapounoff-Haupt sequence.

8. CO-EXISTENCE OF PERIODIC SOLUTIONS

To study the problem of co-existence of periodic solutions, we first consider the case of
pure torsional mode when Ko =0. For u =1, the two characteristic equations are

r sin x cos Tx +cos x sin Tx = 0,

r cos x sin Tx +sin x cos Tx = 0. (69)

Consider first the case when r =1. In Fig. 3, the spectral lines corresponding to r =1 are
straight lines with slope - 1. The points of intersection of these lines with a line of slope Tare
all roots of multiplicity 2. This also follows from the fact that when r = 1, these two equations
are equivalent to one equation cos 2(1 +T)x =1, whose zeros are given by Xn =nl7/(1 + T),
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2.".

f(x)

3."./2

.".

."./2

2.".

K. =1.18920
Fig. 4. Plot of the multi-valued functions f(x} vs x for KI = 1.1892, and for x'" KT/'}' = 2.140561T. A typical
parabolic curve T\/[x2- (KT/'}')2] is also shown intersecting the multivalued function f(x). T'" yi'/T = 5/4.

n = 0, 1 ,2, . " . These are zeros of multiplicity 2, because the derivative sin 2(1 + T)xn == O.
Thus, when (J" = 1 and r = 1, we arrive at the O-sub-sequence

Similarly when (J" = -1, the two characteristic equations are

r sin x sin Tx - cos x cos Tx =0,

r cos x cos Tx - sin x sin Tx = O. (70)

When r = 1, these two equations are equivalent to one equation cos 2(1 +T)x = -1, whose
zeros are Xn = (n + 1/2)1T/(1 + T), n = 0, 1,2, . . . . Again these are zeros of multiplicity 2,
because the derivative sin 2(1 + T)xn == O. Thus in this case we arrive at the O-sub-sequence

Combining the two, we have in this case the Liapounoff-Haupt sequence

(71)

for r =1.
We now consider the case when r t 1, (J' = 1. To find the zeros of multiplicity 2, we consider

the product of eqns (69), which can be written in the form

(vr -Jr)2 sin 2x sin 2Tx - 2[cos 2(1 + T)x -1] = O.

The first derivative of this equation is

(72)

(vr -Jr)2[cos 2x sin 2Tx + T sin 2x cos 2Tx] + 2(1 + T) sin 2(1 + T)x =O. (73)

Evidently, these two equations will be satisfied if x and T are so chosen that

sin 2x = 0, sin 2Tx =0, and cos 2(1 + T)x = 1. (74)
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The roots Xn so determined, are roots of multiplicity 2 and are given by

Xn = q1T/2, T = p/q

(q+p)=2n, q,p,n =0, 1,2,3, ....

311

(75)

We thus see that there exist multiple roots only when T is a rational number. For rational
values of T, a line with this slope will pass through the intersection points of the spectral lines
corresponding to the two equations (69). The coordinates of the intersection points are
(q(1T/2),p(1T/2», where at each intersection point (q+p)=2n. These intersection points are
clearly shown in Fig. 3, and all those intersection points which lie on the line passing through
the origin with slope T =p/q, are zeros of multiplicity 2. Thus if (q1T/2, p1T/2) where (q +p) =2n
be the coordinates of the first zero of multiplicity 2 on the line T = p/q, then the coordinates of
higher zeros on this line are m(q1T/2, p1T/2), where m(q +p) = 2n. As a typical case, the
O-sub-sequence for T = 3/1 is given by

(76)

We now consider the second case when r 1- 1 and (J' = -1. It can similarly be shown that
corresponding to eqn (70), there exist double roots if x and T are so chosen that they satisfy the
equations

sin 2x =0, sin 2Tx =0, and cos 2(1 + T)x =- 1.

In this case, we have roots of multiplicity 2 when

xn = q1T/2, T = p/q

(q+p)=2n+l, q,p,n=0,1,2,3, ...

(77)

(78)

The coordinates of the intersection point of the family of curves corresponding to eqn (70) are
(q1T/2, p1T/2) where (q +p) = 2n + 1. Those intersection points which lie on the line with slope
T = p/q, have the coordinates m(q1T/2, P1T/2), where m(q +p) = 2n +1. As a typical case, the
O-sub-sequence for T = 2/1 is

(79)

(80)

Combining the two results, the Liapounoff-Haupt sequence for a typical value of T = p/q can
now be easily constructed. Choosing T = 3/1, the sequence is

o=00 <0 1 < O2 < 0 1 < O2 < 03 < 04 < 03 =04

<05 <06 < 05 < 06 <07 < 08 <07 = 08 < .. '.

Now consider the intersection of the line with slope T = p/q, with the spectral lines
corresponding to (J' = ± 1. At each intersection point there exists at least one periodic solution,
of period d or 2d, depending upon (J' = +1, or - 1, respectively. When the line with slope
T = p/q intersects a lattice-point with coordinates (q1T/2, p1T/2), two periodic solutions, both of
period d or of period 2d, co-exist. This is called co-existence, implying existence of 2 periodic
solutions of the same period, or coincidence, implying existence of eigenvalues of double
multiplicity. Naturally, coincidence of frequencies implies co-existence of periodic solutions,
and conversely.

We now consider the problem of co-existence of periodic solutions when the radial
eigenvalue K

2 > O. The theory tells us that when (J' = ± 1, there exists, in general, one periodic
solution corresponding to every simple eigenvalue of the characteristic equations (54) and (55).
The other linearly independent solution corresponding to the same ,eigenvalue is, in general,
aperiodic. The problem of co-existence of periodic solutions requires the existence of non
simple eigenvalues of double multiplicity. We therefore look for double roots of the charac-
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teristic equation when K
2 > 0. When a = I, K

2 > 0, the characteristic equation (54) has the
equivalent form

where

(VA - JA)
2

sin 2V[x2- (Kd] sin 2TV[x2- (K'r!·d]

- 2[cos 2(V[x2- (KT)2] +TV[x2- (KTly)2]) - I] = 0,

A == rV[(x2
- (KTIYf)/(x2- (KT)2)],

r == yiil JL, T == yil T, x == TO.

(81)

(82)

We consider the case when I/y> 1. Then eqn (81) and its first derivative will simultaneously be
satisfied if x and T are so chosen that they satisfy the equations

sin 2V[x2- (Kd] = 0, sin 2TV[x2- (KT! y)2] = 0,

COS2(V[X2-(Kd] + TV[X2-(KTly)2]) = 1.

The roots of multiplicity 2 are therefore given by

x, = V[(q~f2)'+(KT)'I, T = ~[, P, CKT)'J
q -(1-y) -

7TY
P +q =2n, q, p, n = 0, 1,2,3, ...

(83)

(84)

We thus see that there exist roots xq of multiplicity 2 if, in general, T is
an appropriately chosen irrational number satisfying condition (84)z. If for a given K, there exist
an integer I and parameters yand T such that (l/l-1)(2T/'Tri=(q2_tz)/K2, then T
is a rational periodic decimal number. If we assume that T is
a suitably chosen irrational number, then a parabolic curve TV[x2- (KTly)2) will pass
through a lattice-point (xq, p7T/2) of the intersecting family of spectral lines corresponding to the
two characteristic equations (67k2' This lattice-point (xq, p7T/2), p +q = 2n, is then a zero of
multiplicity 2. Thus for y = 1/4, T= 971'/20, Kl = 1.18920, Xs = 2.556 66371' will be a zero of
multiplicity 2 if we choose i in such a way that T =p12.795 981, where 5+P =2n. Similarly
X6 =3.047 35571' will be a zero of multiplicity 2 for T =pI4.337916, where 6+P =2n. As an
example, let q = 6 and p = 2 so that 4.337 916T = 2. The parabola TV[x2- (KTly)2] now
intersects the lattice-point (X6' 71'), and examination of Fig. 4 reveals that we have a sub
sequence which can be arranged in an ascending order, except that one of the eigenvalues is of
multiplicity 2. The structure of this sequence is obvious from Fig. 4.

We now consider the case when a = -I, K
2 > 0. It can similarly be shown that corresponding

to the characteristic equation (55), there exist double roots if x and T are so chosen that they
satisfy the equations

sin 2V[X2-(Kd] =0, sin 2TV[x2-(KTIYfl =0,

cos 2(V[x2
- (KTf] + Ty'[x2- (KTly)2]) = - 1.

In this case the roots of multiplicity 2 are given by

p +q = 2n +I, p, q, n = 0,1,2,3, ...

(85)

(86)

The discussion concerning these roots of multiplicity 2, follows along the same lines as in the
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previous case when (T =+1, and therefore hardly needs reiteration. However, we may repeat
that existence of the double roots implies co-existence of two periodic solutions, both of the
same period, d or 2d, whichever the case may be.

9. STABILITY

To study regions of lability and stability we now plot graphs showing x vs T, for ICo =0 and
K) =1.18920, which are shown in Figs. 5 and 6, respectively.

1(0=0

Fig. 5. Stability chart x vs T for pure torsional modes, KO = O. Regions of stability are shown hatched
where the solutions are bounded. Periodic solutions clHlxist at points of intersection.

x

27' u:.<~"":~(LL.LL..t.~U.L"LL..~~U.LLLI""'~~
1 1.5 T 2.5
K =1.18920

Fig. 6. Stability chart x vs T for torsional modes with one radial node, KI = 1.18920. Regions of stability are
shown hatched where the solutions are stable. Periodic solutions co-exist at points of intersection.
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Solutions are called stable and bounded when jHj < 2. For values of x and T in the hatched
regions in these figures, all solutions are stable, and thus the hatched regions are called regions
of stability. Unhatched regions are regions of lability where IHI > 2, and the solutions are
unbounded. On the boundaries of hatched and unhatched regions, IHI == 2, and therefore for a
typical point (x, T) on the boundary, there exists at least one periodic solution of period d, or
2d. At a point of intersection, two such periodic solutions co-exist. These points of intersection,
correspond to similar intersection points in Figs. 3 and 4. We note from the stability diagrams
that there is one value of T for which Ot = O2, three values of T for which 0 3 == 0 4 , 5 values of
T for which 0 5 = 0 6, etc... , no value of T for which nt = n2, 2 values of T for which n3 = n4 ,

4 values of T for which n5 = n6, etc.
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